Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Bull World Health Organ ; 102(3): 204-215, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420575

RESUMO

Objective: To explore the impact of mosquito collection methods, sampling intensity and target genus on molecular xenomonitoring detection of parasites causing lymphatic filariasis. Methods: We systematically searched five databases for studies that used two or more collection strategies for sampling wild mosquitoes, and employed molecular methods to assess the molecular xenomonitoring prevalence of parasites responsible for lymphatic filariasis. We performed generic inverse variance meta-analyses and explored sources of heterogeneity using subgroup analyses. We assessed methodological quality and certainty of evidence. Findings: We identified 25 eligible studies, with 172 083 mosquitoes analysed. We observed significantly higher molecular xenomonitoring prevalence with collection methods that target bloodfed mosquitoes compared to methods that target unfed mosquitoes (prevalence ratio: 3.53; 95% confidence interval, CI: 1.52-8.24), but no significant difference compared with gravid collection methods (prevalence ratio: 1.54; 95% CI: 0.46-5.16). Regarding genus, we observed significantly higher molecular xenomonitoring prevalence for anopheline mosquitoes compared to culicine mosquitoes in areas where Anopheles species are the primary vector (prevalence ratio: 6.91; 95% CI: 1.73-27.52). One study provided evidence that reducing the number of sampling sites did not significantly affect molecular xenomonitoring prevalence. Evidence of differences in molecular xenomonitoring prevalence between sampling strategies was considered to be of low certainty, due partly to inherent limitations of observational studies that were not explicitly designed for these comparisons. Conclusion: The choice of sampling strategy can significantly affect molecular xenomonitoring results. Further research is needed to inform the optimum strategy in light of logistical constraints and epidemiological contexts.


Assuntos
Anopheles , Filariose Linfática , Humanos , Animais , Filariose Linfática/epidemiologia , Wuchereria bancrofti , Prevalência , Mosquitos Vetores/parasitologia , Anopheles/parasitologia
2.
Ecol Evol ; 14(2): e10917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371856

RESUMO

Implementation of long-lasting insecticide-treated net (LLIN) programs to control human malaria transmission leads to substantial reductions in the abundance of Anopheles mosquitoes, but the impact on the population genetic structure of the malaria vectors is poorly known, nor has it been investigated in Papua New Guinea, where malaria is highly endemic and where several species of Anopheles have vector roles. Here, we applied Wright's F-statistic, analysis of molecular variance, Bayesian structure analysis, and discriminant analysis of principle components to microsatellite genotype data to analyze the population genetic structure of Anopheles farauti between and within the northern and southern lowland plains and of Anopheles punctulatus within the northern plain of Papua New Guinea after such a program. Bottleneck effects in the two malaria vectors were analyzed using Luikart and Cornuet's tests of heterozygosity. A large, panmictic population of An. punctulatus pre-LLIN program diverged into two subregional populations corresponding to Madang and East Sepik provinces post-LLIN distribution and experienced a genetic bottleneck during this process. By contrast, the An. farauti population existed as two regional populations isolated by mountain ranges pre-LLIN, a genetic structure that persisted after the distribution of LLINs with no further geographic differentiation nor evidence of a genetic bottleneck. These findings show the differential response of populations of different vector species to interventions, which has implications for program sustainability and gene flow.

4.
PLoS One ; 18(8): e0288994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561739

RESUMO

Knockdown resistance (kdr) alleles conferring resistance to pyrethroid insecticides are widespread amongst vector populations. Previous research has suggested that these alleles are associated with changes in the vector competence of mosquitoes for arboviruses and Plasmodium, however non-target genetic differences between mosquito strains may have had a confounding effect. Here, to minimise genetic differences, the laboratory Anopheles gambiae Kisumu strain was compared to a CRISPR/Cas9 homozygous kdr L1014F mutant Kisumu-kdr line in order to examine associations with vector competence for o'nyong nyong virus (ONNV). Mosquitoes were infected using either blood feeds or intrathoracic microinjections. There were no significant differences in the prevalence of virus in mosquito body parts between kdr mutant and wildtype lines from either oral or intrathoracic injection routes. The ONNV titre was significantly higher in the legs of the wildtype strain at 7dpi following intrathoracic microinjection, but no other significant differences in viral titre were detected. ONNV was not detected in the saliva of mosquitoes from either strain. Our findings from per os infections suggest that the kdr L1014F allele is not associated with altered infection prevalence for ONNV, a key component of vector competence.


Assuntos
Anopheles , Inseticidas , Animais , Vírus O'nyong-nyong , Anopheles/genética , Alelos , Sistemas CRISPR-Cas/genética , Mosquitos Vetores/genética , Resistência a Inseticidas/genética
6.
Int Health ; 15(5): 566-572, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096453

RESUMO

BACKGROUND: Lymphatic filariasis (LF) and malaria are important vector-borne diseases that are co-endemic throughout Nigeria. These infections are transmitted by the same mosquito vector species in Nigeria and their transmission is similarly influenced by climate and sociodemographic factors. The goal of this study was to assess the relationship between the geospatial distribution of both infections in Nigeria to better coordinate interventions. METHODS: We used national survey data for malaria from the Demographic and Health Survey dataset and site-level LF mapping data from the Nigeria Lymphatic Filariasis Control Programme together with a suite of predictive climate and sociodemographic factors to build geospatial machine learning models. These models were then used to produce continuous gridded maps of both infections throughout Nigeria. RESULTS: The R2 values for the LF and malaria models were 0.68 and 0.59, respectively. Also, the correlation between pairs of observed and predicted values for LF and malaria models were 0.69 (95% confidence interval [CI] 0.61 to 0.79; p<0.001) and 0.61 (95% CI 0.52 to 0.71; p<0.001), respectively. However, we observed a very weak positive correlation between overall overlap of LF and malaria distribution in Nigeria. CONCLUSIONS: The reasons for this counterintuitive relationship are unclear. Differences in transmission dynamics of these parasites and vector competence may contribute to differences in the distribution of these co-endemic diseases.


Assuntos
Filariose Linfática , Malária , Animais , Humanos , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Nigéria/epidemiologia , Malária/prevenção & controle , Doenças Endêmicas , Mosquitos Vetores
7.
PLoS Negl Trop Dis ; 16(12): e0010615, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36580452

RESUMO

BACKGROUND: Mansonella perstans is among the most neglected of the neglected tropical diseases and is believed to cause more human infections than any other filarial pathogen in Africa. Based largely upon assumptions of limited infection-associated morbidity, this pathogen remains understudied, and many basic questions pertaining to its pathogenicity, distribution, prevalence, and vector-host relationships remain unanswered. However, in recent years, mounting evidence of the potential for increased Mansonella infection-associated disease has sparked a renewal in research interest. This, in turn, has produced a need for improved diagnostics, capable of providing more accurate pictures of infection prevalence, pathogen distribution, and vector-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: Utilizing a previously described pipeline for the discovery of optimal molecular diagnostic targets, we identified a repetitive DNA sequence, and developed a corresponding assay, which allows for the sensitive and species-specific identification of M. perstans in human blood samples. Testing also demonstrated the ability to utilize this assay for the detection of M. perstans in field-collected mosquito samples. When testing both sample types, our repeat-targeting index assay outperformed a ribosomal sequence-targeting reference assay, facilitating the identification of additional M. perstans-positive samples falsely characterized as "negative" using the less sensitive detection method. CONCLUSIONS/SIGNIFICANCE: Through the development of an assay based upon the systematic identification of an optimal DNA target sequence, our novel diagnostic assay will provide programmatic efforts with a sensitive and specific testing platform that is capable of accurately mapping M. perstans infection and determining prevalence. Furthermore, with the added ability to identify the presence of M. perstans in mosquito samples, this assay will help to define our knowledge of the relationships that exist between this pathogen and the various geographically relevant mosquito species, which have been surmised to represent potential secondary vectors under certain conditions. Detection of M. perstans in mosquitoes will also demonstrate proof-of-concept for the mosquito-based monitoring of filarial pathogens not vectored primarily by mosquitoes, an approach expanding opportunities for integrated surveillance.


Assuntos
Culicidae , Mansonelose , Parasitos , Animais , Humanos , Mansonella/genética , Mosquitos Vetores , Genômica , Mansonelose/diagnóstico , Mansonelose/epidemiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-35734077

RESUMO

Long-lasting insecticidal nets (LLINs) supplemented with the synergist piperonyl butoxide have been developed in response to growing pyrethroid resistance; however, their durability in the field remains poorly described. A pragmatic cluster-randomised trial was embedded into Uganda's 2017-2018 LLIN distribution to compare the durability of LLINs with and without PBO. A total of 104 clusters (health sub-districts) were included with each receiving one of four LLIN products, two with pyrethroid + PBO (Olyset Plus and PermaNet 3.0) and two pyrethroid-only (Olyset Net and PermaNet 2.0). Nets were sampled at baseline, 12 and 25 months post-distribution to assess physical condition, chemical content, and bioefficacy. Physical condition was quantified using proportionate Hole Index and chemical content measured using high-performance liquid chromatography. Bioefficacy was assessed with three-minute World Health Organisation (WHO) Cone and Wireball assays using pyrethroid-resistant Anopheles gambiae, with 1-h knockdown and 24-h mortality recorded. There was no difference in physical durability between LLIN products assessed (P = 0.644). The pyrethroid content of all products remained relatively stable across time-points but PBO content declined by 55% (P < 0.001) and 58% (P < 0.001) for Olyset Plus and PermaNet 3.0 respectively. Both PBO LLINs were highly effective against pyrethroid-resistant mosquitoes when new, knocking down all mosquitoes. However, bioefficacy declined over time with Olyset Plus knocking down 45.72% (95% CI: 22.84-68.62%, P = 0.021) and Permanent 3.0 knocking down 78.57% (95% CI: 63.57-93.58%, P < 0.001) after 25 months. Here we demonstrate that both Olyset Plus and PermaNet 3.0 are as durable as their pyrethroid-only equivalents and had superior bioefficacy against pyrethroid-resistant An. gambiae. However, the superiority of PBO-LLINs decreased with operational use, correlating with a reduction in total PBO content. This decline in bioefficacy after just two years is concerning and there is an urgent need to assess the durability of PBO LLINs in other settings.

10.
PLoS Negl Trop Dis ; 15(10): e0009812, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637436

RESUMO

BACKGROUND: Molecular xenomonitoring (MX), the detection of parasite nucleic acid in the vector population, is recommended for onchocerciasis surveillance in elimination settings. However, the sensitivity of MX for detecting onchocerciasis-positive communities has not previously been evaluated. MX may have additional applications for control programmes but its utility is restricted by a limited understanding of the relationship between MX results and human prevalence. METHODS: We conducted a systematic review of studies reporting the prevalence of Onchocerca volvulus DNA in wild-caught Simulium spp. flies (MX rate) and corresponding prevalence of microfilaria (mf) in humans. We evaluated the sensitivity of MX for detecting onchocerciasis-positive communities and describe the characteristics of studies with reduced sensitivity. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. RESULTS: We identified 15 relevant studies, with 13 studies comprising 34 study communities included in the quantitative analyses. Most communities were at advanced stages towards elimination and had no or extremely low human prevalence. MX detected positive flies in every study area with >1% mf prevalence, with the exception of one study conducted in the Venezuelan Amazonian focus. We identified a significant relationship between the two measurements, with mf prevalence accounting for half of the variation in MX rate (R2 0.50, p<0.001). CONCLUSION: MX is sensitive to communities with ongoing onchocerciasis transmission. It has potential to predict human mf prevalence, but further data is required to understand this relationship, particularly from MX surveys conducted earlier in control programmes before transmission has been interrupted.


Assuntos
Testes Diagnósticos de Rotina/métodos , Insetos Vetores/parasitologia , Onchocerca volvulus/genética , Oncocercose/diagnóstico , Simuliidae/parasitologia , Animais , Testes Diagnósticos de Rotina/instrumentação , Testes Diagnósticos de Rotina/normas , Humanos , Insetos Vetores/fisiologia , Microfilárias/genética , Microfilárias/isolamento & purificação , Microfilárias/fisiologia , Onchocerca volvulus/isolamento & purificação , Onchocerca volvulus/fisiologia , Oncocercose/parasitologia , Oncocercose/transmissão , Simuliidae/fisiologia
11.
Clin Infect Dis ; 72(Suppl 3): S203-S209, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33906238

RESUMO

BACKGROUND: Molecular xenomonitoring (MX), the detection of pathogen DNA in mosquitoes, is a recommended approach to support lymphatic filariasis (LF) elimination efforts. Potential roles of MX include detecting presence of LF in communities and quantifying progress towards elimination of the disease. However, the relationship between MX results and human prevalence is poorly understood. METHODS: We conducted a systematic review and meta-analysis from all previously conducted studies that reported the prevalence of filarial DNA in wild-caught mosquitoes (MX rate) and the corresponding prevalence of microfilaria (mf) in humans. We calculated a pooled estimate of MX sensitivity for detecting positive communities at a range of mf prevalence values and mosquito sample sizes. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. RESULTS: We identified 24 studies comprising 144 study communities. MX had an overall sensitivity of 98.3% (95% confidence interval, 41.5-99.9%) and identified 28 positive communities that were negative in the mf survey. Low sensitivity in some studies was attributed to small mosquito sample sizes (<1000) and very low mf prevalence (<0.25%). Human mf prevalence and mass drug administration status accounted for approximately half of the variation in MX rate (R2 = 0.49, P < .001). Data from longitudinal studies showed that, within a given study area, there is a strong linear relationship between MX rate and mf prevalence (R2 = 0.78, P < .001). CONCLUSIONS: MX shows clear potential as tool for detecting communities where LF is present and as a predictor of human mf prevalence.


Assuntos
Culicidae , Filariose Linfática , Animais , Testes Diagnósticos de Rotina , Filariose Linfática/tratamento farmacológico , Humanos , Administração Massiva de Medicamentos , Microfilárias , Prevalência , Wuchereria bancrofti
12.
Trans R Soc Trop Med Hyg ; 115(3): 261-268, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33515454

RESUMO

BACKGROUND: In view of the current global coronavirus disease 2019 pandemic, mass drug administration interventions for neglected tropical diseases, including lymphatic filariasis (LF), have been halted. We used mathematical modelling to estimate the impact of delaying or cancelling treatment rounds and explore possible mitigation strategies. METHODS: We used three established LF transmission models to simulate infection trends in settings with annual treatment rounds and programme delays in 2020 of 6, 12, 18 or 24 months. We then evaluated the impact of various mitigation strategies upon resuming activities. RESULTS: The delay in achieving the elimination goals is on average similar to the number of years the treatment rounds are missed. Enhanced interventions implemented for as little as 1 y can allow catch-up on the progress lost and, if maintained throughout the programme, can lead to acceleration of up to 3 y. CONCLUSIONS: In general, a short delay in the programme does not cause a major delay in achieving the goals. Impact is strongest in high-endemicity areas. Mitigation strategies such as biannual treatment or increased coverage are key to minimizing the impact of the disruption once the programme resumes and lead to potential acceleration should these enhanced strategies be maintained.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis/organização & administração , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Erradicação de Doenças , Filaricidas/uso terapêutico , Humanos , Administração Massiva de Medicamentos , Modelos Teóricos , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle , Pandemias , SARS-CoV-2
13.
PLoS One ; 15(5): e0232325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357154

RESUMO

BACKGROUND: Optimization of polymerase chain reaction (PCR)-based diagnostics requires the careful selection of molecular targets that are both highly repetitive and pathogen-specific. Advances in both next-generation sequencing (NGS) technologies and bioinformatics-based analysis tools are facilitating this selection process, informing target choices and reducing labor. Once developed, such assays provide disease control and elimination programs with an additional set of tools capable of evaluating and monitoring intervention successes. The importance of such tools is heightened as intervention efforts approach their endpoints, as accurate and complete information is an essential component of the informed decision-making process. As global efforts for the control and elimination of both lymphatic filariasis and malaria continue to make significant gains, the benefits of diagnostics with improved analytical and clinical/field-based sensitivities and specificities will become increasingly apparent. METHODOLOGY/PRINCIPAL FINDINGS: Coupling Illumina-based NGS with informatics approaches, we have successfully identified the tandemly repeated elements in both the Wuchereria bancrofti and Plasmodium falciparum genomes of putatively greatest copy number. Utilizing these sequences as quantitative real-time PCR (qPCR)-based targets, we have developed assays capable of exploiting the most abundant tandem repeats for both organisms. For the detection of P. falciparum, analysis and development resulted in an assay with improved analytical and field-based sensitivity vs. an established ribosomal sequence-targeting assay. Surprisingly, analysis of the W. bancrofti genome predicted a ribosomal sequence to be the genome's most abundant tandem repeat. While resulting cycle quantification values comparing a qPCR assay targeting this ribosomal sequence and a commonly targeted repetitive DNA sequence from the literature supported our finding that this ribosomal sequence was the most prevalent tandemly repeated target in the W. bancrofti genome, the resulting assay did not significantly improve detection sensitivity in conjunction with field sample testing. CONCLUSIONS/SIGNIFICANCE: Examination of pathogen genomes facilitates the development of PCR-based diagnostics targeting the most abundant and specific genomic elements. While in some instances currently available tools may deliver equal or superior performance, systematic analysis of potential targets provides confidence that the selected assays represent the most advantageous options available and that informed assay selection is occurring in the context of a particular study's objectives.


Assuntos
Culicidae/parasitologia , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequências de Repetição em Tandem , Wuchereria bancrofti/isolamento & purificação , Animais , DNA de Helmintos , Plasmodium falciparum/genética , Wuchereria bancrofti/genética
14.
PLoS Negl Trop Dis ; 14(4): e0008175, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32267840

RESUMO

We recently developed a superhydrophobic cone-based method for the collection of mosquito excreta/feces (E/F) for the molecular xenomonitoring of vector-borne parasites showing higher throughput compared to the traditional approach. To test its field applicability, we used this platform to detect the presence of filarial and malaria parasites in two villages of Ghana and compared results to those for detection in mosquito carcasses and human blood. We compared the molecular detection of three parasites (Wuchereria bancrofti, Plasmodium falciparum and Mansonella perstans) in mosquito E/F, mosquito carcasses and human blood collected from the same households in two villages in the Savannah Region of the country. We successfully detected the parasite DNA in mosquito E/F from indoor resting mosquitoes, including W. bancrofti which had a very low community prevalence (2.5-3.8%). Detection in the E/F samples was concordant with detection in insect whole carcasses and human blood, and a parasite not vectored by mosquitoes was detected as well.Our approach to collect and test mosquito E/F successfully detected a variety of parasites at varying prevalence in the human population under field conditions, including a pathogen (M. perstans) which is not transmitted by mosquitoes. The method shows promise for further development and applicability for the early detection and surveillance of a variety of pathogens carried in human blood.


Assuntos
Culicidae/parasitologia , DNA de Protozoário/isolamento & purificação , Fezes/parasitologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Animais , DNA de Helmintos/genética , DNA de Protozoário/genética , Características da Família , Gana/epidemiologia , Humanos , Malária/epidemiologia , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/genética , Prevalência , Wuchereria bancrofti/genética
15.
Sci Rep ; 9(1): 18449, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804546

RESUMO

Evidence from experimental infection studies has shown that infected mosquitoes exhibit altered host-seeking behaviours, with suppression and activation of behaviours dependent on the parasite's development stage. The mechanisms are poorly characterised; however, infections can impact mosquito energy reserves, thereby influencing key life-history traits and behaviours. In addition, filarial infection is likely detrimental to flight due to damage caused by developing worms. This study aimed to evaluate the impacts of Brugia malayi infection on Aedes aegypti flight parameters: distance, average speed, maximum speed and number of flight bursts, using a tethered flight mill. In addition, we explored whether differences in flight capacity may be due to the effect of infection on glycogen and lipid reserves. Infection with filarial worms significantly reduced flight distance but increased the number of flight bursts. Exposure to microfilaermic blood led to a significant decrease in average and maximum flight speeds even in the absence of an established infection. Mosquitoes fed on microfilaraemic blood showed reduced levels of glycogen (-37.9%) and lipids (-49.7%) compared to controls at nine days post-exposure. However, a one-hour period of flight activity caused an increase in lipid content for both infected and control mosquitoes. Consequential flight incapacitation may serve in explaining the heterogeneous distribution of lymphatic filariasis.


Assuntos
Aedes/fisiologia , Brugia Malayi/patogenicidade , Filariose Linfática/transmissão , Mosquitos Vetores/fisiologia , Aedes/parasitologia , Animais , Filariose Linfática/parasitologia , Metabolismo Energético/fisiologia , Feminino , Voo Animal/fisiologia , Glicogênio/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Mosquitos Vetores/parasitologia
16.
Trends Parasitol ; 35(11): 860-869, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506245

RESUMO

In the global drive for elimination of lymphatic filariasis (LF), 15 countries have achieved validation of elimination as a public health problem (EPHP). Recent empirical evidence has demonstrated that EPHP does not always lead to elimination of transmission (EOT). Here we show how the probability of elimination explicitly depends on key biological parameters, many of which have been poorly characterized, leading to a poor evidence base for the elimination threshold. As more countries progress towards EPHP it is essential that this process is well-informed, as prematurely halting treatment and surveillance programs could pose a serious threat to global progress. We highlight that refinement of the weak empirical evidence base is vital to understand drivers of elimination and inform long-term policy.


Assuntos
Erradicação de Doenças/normas , Filariose Linfática/prevenção & controle , Erradicação de Doenças/tendências , Política de Saúde , Humanos
17.
Malar J ; 18(1): 96, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909928

RESUMO

BACKGROUND: Community composition of Anopheles mosquitoes, and their host-seeking and peridomestic behaviour, are important factors affecting malaria transmission. In this study, barrier screen sampling was used to investigate species composition, abundance, and nocturnal activity of Anopheles populations in villages of Papua New Guinea. METHODS: Mosquitoes were sampled from 6 pm to 6 am in five villages from 2012 to 2016. The barrier screens were positioned between the village houses and the perimeter of villages where cultivated and wild vegetation ("the bush") grew thickly. Female Anopheles that rested on either village or bush side of the barrier screens, as they commuted into and out of the villages, were captured. Similarity in species composition among villages was assessed. Mosquitoes captured on village and bush sides of the barrier screens were sorted by feeding status and by hour of collection, and their numbers were compared using negative binomial generalized linear models. RESULTS: Females of seven Anopheles species were present in the sample. Species richness ranged from four to six species per village, but relative abundance was highly uneven within and between villages, and community composition was similar for two pairs of villages and highly dissimilar in a fifth. For most Anopheles populations, more unfed than blood-fed mosquitoes were collected from the barrier screens. More blood-fed mosquitoes were found on the side of the barrier screens facing the village and relatively more unfed ones on the bush side, suggesting commuting behaviour of unfed host-seeking females into the villages from nearby bush and commuting of blood-fed females away from villages towards the bush. For most populations, the majority of host-seeking mosquitoes arrived in the village before midnight when people were active and unprotected from the mosquitoes by bed nets. CONCLUSION: The uneven distribution of Anopheles species among villages, with each site dominated by different species, even among nearby villages, emphasizes the importance of vector heterogeneity in local malaria transmission and control. Yet, for most species, nocturnal activity patterns of village entry and host seeking predominantly occurred before midnight indicating common behaviours across species and populations relative to human risk of exposure to Anopheles bites.


Assuntos
Anopheles/fisiologia , Biodiversidade , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Animais , Anopheles/classificação , Ritmo Circadiano , Comportamento Alimentar , Feminino , Mosquitos Vetores/classificação , Papua Nova Guiné , Densidade Demográfica
18.
PLoS Negl Trop Dis ; 13(1): e0006994, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608931

RESUMO

BACKGROUND: Despite the progress achieved in scaling-up mass drug administration (MDA) for lymphatic filariasis (LF) in Ghana, communities with persistent LF still exist even after 10 years of community treatment. To understand the reasons for persistence, we conducted a study to assess the status of disease elimination and understand the adherence to interventions including MDA and insecticide treated nets. METHODOLOGY AND PRINCIPAL FINDINGS: We conducted a parasitological and epidemiological cross-sectional study in adults from eight villages still under MDA in the Northern Region savannah and the coastal Western Region of the country. Prevalence of filarial antigen ranged 0 to 32.4% and in five villages the prevalence of night blood microfilaria (mf) was above 1%, ranging from 0 to 5.7%. Median mf density was 67 mf/ml (range: 10-3,560). LF antigen positivity was positively associated with male sex but negatively associated with participating in MDA the previous year. Male sex was also associated with a decreased probability of participating in MDA. A stochastic model (TRANSFIL) was used to assess the expected microfilaria prevalence under different MDA coverage scenarios using historical data on one community in the Western Region. In this example, the model simulations suggested that the slow decline in mf prevalence is what we would expect given high baseline prevalence and a high correlation between MDA adherence from year to year, despite high MDA coverage. CONCLUSIONS: There is a need for an integrated quantitative and qualitative research approach to identify the variations in prevalence, associated risk factors and intervention coverage and use levels between and within regions and districts. Such knowledge will help target resources and enhance surveillance to the communities most at risk and to reach the 2020 LF elimination goals in Ghana.


Assuntos
Filariose Linfática , Filaricidas/uso terapêutico , Administração Massiva de Medicamentos , Albendazol/uso terapêutico , Animais , Anopheles/parasitologia , Antígenos de Helmintos/sangue , Brugia Malayi/efeitos dos fármacos , Criança , Pré-Escolar , Estudos Transversais , Dietilcarbamazina/uso terapêutico , Filariose Linfática/tratamento farmacológico , Filariose Linfática/epidemiologia , Filariose Linfática/transmissão , Feminino , Gana/epidemiologia , Humanos , Ivermectina/uso terapêutico , Masculino , Microfilárias/efeitos dos fármacos , Microfilárias/isolamento & purificação , Carga Parasitária , Fatores de Risco , População Rural , Wuchereria bancrofti/efeitos dos fármacos
19.
Gates Open Res ; 3: 1734, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32596646

RESUMO

Background:  Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods:  Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated.  Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each.       Results:  Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species.  Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible.  However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei.  Testing also suggested that dPCR may facilitate detection through its increased sensitivity.  Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions:  By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible.  However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.

20.
Parasitology ; 145(13): 1783-1791, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29898803

RESUMO

Monitoring vectors is relevant to ascertain transmission of lymphatic filariasis (LF). This may require the best sampling method that can capture high numbers of specific species to give indication of transmission. Gravid anophelines are good indicators for assessing transmission due to close contact with humans through blood meals. This study compared the efficiency of an Anopheles gravid trap (AGT) with other mosquito collection methods including the box and the Centres for Disease Control and Prevention gravid, light, exit and BioGent-sentinel traps, indoor resting collection (IRC) and pyrethrum spray catches across two endemic regions of Ghana. The AGT showed high trapping efficiency by collecting the highest mean number of anophelines per night in the Western (4.6) and Northern (7.3) regions compared with the outdoor collection methods. Additionally, IRC was similarly efficient in the Northern region (8.9) where vectors exhibit a high degree of endophily. AGT also showed good trapping potential for collecting Anopheles melas which is usually difficult to catch with existing methods. Screening of mosquitoes for infection showed a 0.80-3.01% Wuchereria bancrofti and 2.15-3.27% Plasmodium spp. in Anopheles gambiae. The AGT has shown to be appropriate for surveying Anopheles populations and can be useful for xenomonitoring for both LF and malaria.


Assuntos
Anopheles/parasitologia , Entomologia/métodos , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Plasmodium/isolamento & purificação , Wuchereria bancrofti/isolamento & purificação , Animais , Filariose Linfática/transmissão , Doenças Endêmicas , Entomologia/instrumentação , Feminino , Gana , Controle de Mosquitos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...